Meta menu:

From here, you can access the Emergencies page, Contact Us page, Accessibility Settings, Language Selection, and Search page.

Open Menu
Blutgefäßkreislauf der Chorioallantoismembran des Hühnereis, Durchlichtbild ©Nitzsche/Grune



Charité 3R funds three new research projects - kickoff for tandem projects

Back to Overview

You are here:

An innovative approach for the personalised treatment of liver metastases, an animal-free model for translational research on pain and neurotoxicity and the development of an alternative test system for heart failure: Charité 3R is funding a total of three new research projects with around 350.000 euros for a period of 23 months.

The aim of the funding is to improve a specific 3R method and increase its informative value. The call for proposals "Tandem projects for early career researchers" was specifically aimed at young researchers who were to come together in pairs from different or complementary fields to work on a common research question from different perspectives. For example, tandems consisting of a bioinformatician (in silico) and a scientist working with animals (in vivo) or a cell culture expert (in vitro) and a bioinformatician (in silico) applied. Three projects were selected for funding from a total of seven applications submitted.

In order to develop a new method for the early detection of heart failure, Dr. Jana Grune and Dr. Bianca Nitzsche from the Institute of Physiology combine two already established methods in the project "Simulation of Heart failure in Ovo With Microscopy and Echocardiography (ShowMe)": the assessment of heart performance by means of ultrasound/microscopy and the use of fertilised chicken eggs. The aim is to detect cardiotoxic effects unambiguously and at an earlier stage of heart development than to date. In preclinical research on heart failure, the testing of cardiotoxic effects of drugs, foreign substances and pathogens is currently carried out almost exclusively in animal experiments on mice or rats. The two scientists now want to develop an alternative test system with the help of which the use of laboratory animals can be dispensed with. To this end, the already established in ovo model of fertilised chicken eggs is to be used and further developed in such a way that the potential cardiotoxicity of an active substance can in future already be determined in the chicken egg. If successful, it would also be possible to apply ShowMe in other areas in which small animals are currently used as standard for recording cardiac function.

The aim of the project "Personalised treatment planning using matrix-based in vitro liver metastases of colorectal carcinoma to reduce metastatic mouse models" is to develop better ex vivo cancer models and thereby reduce the number of experiments with mice. To achieve this, the two young scientists Dr. Karl Herbert Hillebrandt from the Surgical Clinic Campus Virchow-Klinikum and Dr. Björn Papke from the Institute of Pathology combine their expertise in the production of complex human tissues with research on 3D cancer models. Currently, 50 percent of patients with colorectal carcinoma also develop liver metastases as part of their disease. In order to better understand the individual behaviour of these colorectal liver metastases, the environment of the tumour cells within and around a metastasis must be mirrored as closely as possible. For this purpose, individual liver metastases are grown in vitro in the patient's decellularised liver matrix - i.e. a part of the liver tissue that has been freed from all cells. These individual matrix-based liver metastases are then used for personalised testing of different therapies. The two scientists hope that by successfully establishing this method, a large number of tumour mouse models can be dispensed with in the future.

The aim of the third project "iPSC-based sensitive neurons as an animal-free model of translational pain and neurodegeneration research" by Dr. Christian Schinke, Dr. Narasimha Swamy Telugu and Dr. Valeria Fernandez Vallone is to use human stem cell derived sensory neurons to research sensory loss and altered pain perception of patients after chemotherapy. After chemotherapy, many people suffer from neurological side effects such as altered sensation, sensory loss or pain: a so-called chemotherapy-induced polyneuropathy. Research in the field of this neurological disorders has so far mainly been carried out in animals. In this project, the trio from the Department of Neurology, the Max Delbrück Centre and the BIH seek to develop an animal-free model for translational research into pain and neurotoxicity: Based on sensory neurons derived from patients with and without severe neuropathy, induced pluripotent stem cells (iPSC) will be generated and differentiated into sensory neurons. Changes in protein and cell metabolism caused by chemotherapy will be analysed experimentally and correlated with the clinical complaints of the patients. The aim is to identify the individual mechanisms of neurotoxicity and pain, to promote iPSC-based methods to replace animal experiments and to significantly reduce animal-based knockout models in pain research. 



Dr. Julia Biederlack

Coordination Communication and Public RelationsCharité – Universitätsmedizin Berlin

Postal address: Charitéplatz 1 10117  Berlin

Campus / internal address:Reinhardtstr. 58 | 10117 Berlin

Back to Overview